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The variance o} of the Strehl ratio of a reasonably well-corrected adaptive optics system is derived as a power
series in the log-amplitude variance o} and the residual phase error variance o, Itis shown that, to leading
order, the variance of the Strehl ratio is dependent on the first power of the log-amplitude variance, (o)}, of

the incident optical field but only on the second power of the residual phase variance, ( 0'%‘,,)2, of that field after
adaptive optics correction, and on the first power of the product of the log-amplitude variance times the phase

variance, (020%,)!.  As long as the adaptive optics correction is good enough to ensure that the variance of the
residual phase, 02, is significantly less than unity, then even for fairly small values of the log-amplitude vari-
ance frf, the value of the variance of the Strehl ratio, a':é, will be dominated by the value of the log-amplitude
variance. © 1998 Optical Society of America [S0740-3232(98)02008-0)

OCIS codes: 010.1080, 010.1330, 290.5930, 350.5030.

In studying the variability of the Strehl ratio of an adap-
tive optics system, we have derived an analytic expression
for the variance of the Strehl ratio, (r?g, as a power series
in the residual phase variance o2, and the log-amplitude
variance o7 in a regime where each of these two variances
is significantly less than unity. We have been surprised
to find that our result for ¢ has no linear dependence on
the residual phase error variance (r'f;‘,,. The consequence
of this is that in general the value of the variance o of
the Strehl ratio is dominated by the value of the incident
optical field’s log-amplitude variance o7 and not by the
value o2, of the variance (or mean square value) of the
residual phase error after adaptive optics correction.
While improving the adaptive optics performance, i.e., re-
ducing the value of ¢2,, will improve the mean value of
the Strehl ratio, {(S), bringing it closer to unity, beyond
some fairly modest level of performance the further im-
provement of the adaptive optics will not significantly re-
duce the variance of the Strehl ratio. At that point the
value of the variance of the Strehl ratio is dominated by
the pattern over the system’s aperture of the incident
field’s optical intensity variations—by what we call the
“random apodization” of the aperture.

We have considered a ground-based adaptive optics
telescope system, a system looking upward and operating
in the visible or the near infrared —for which case the log-
amplitude variance will generally be of the order of o}
= 0.01 to 0.10 Np?—and have concerned ourselves with
the variability from instant to instant of the system’s per-
formance, the performance being measured by the Strehl
ratio S. We have restricted our attention to the Strehl
ratio, as this quantity serves as a surrogate for the less
exactly defined concept of resolution' and as a surrogate

for the concept of antenna gain. Our interest in the ran-
dom variability from instant to instant has to do with ap-
plications, such as short-exposure imagery, for which its
value at a particular instant that will determine the sys-
tem user’s assessment of the system’s performance.

The value of S is set by both the residual phase error,
i.e., by the (small) part of the turbulence-induced wave-
front distortion that for various practical reasons the
adaptive optics did not correct, and by the variations over
the telescope’s aperture of the intensity of the received op-
tical signal.?

An analysis of the expected values of the first and sec-
ond moments of the Strehl ratio, (S) and (S?%), respec-
tively, shows that these quantities have values given by
the equations

(S)

jf dr,,dr,W(r,)W(ry)exp(F)
= , 1)

ff dr, ,droW(r, ) W(r,)

(8%

fffj dr, ,drodrgdr, W(r ) W(r,)W(r;) W(r,)exp(F5)

ﬁ”j dr; ,drydryde,Wir ) Wiry)W(r;)W(ry)
(2)
Although these equations were derived before the devel-
opment of adaptive optics® and the wave-front distortion
considered then was the uncorrected wave-front distor-
tion (i.e., wave-front distortion without any adaptive op-
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tics correction), those results are fully applicable to an
adaptive optics system if the measure of the wave-front-
distortion statistics inherent in the F, and F, functions
appearing in Egs. (1) and (2) is understood to be that for
the residual wave-front distortion after adaptive optics
correction.

The function W(r) denotes the extent of the system’s
aperture, having a value of unity for a position r that is
inside the aperture and a value of zero for a position that
is outside the aperture. We have considered the system
that has a clear circular aperture of diameter D, for
which case we can write

1 if |r| < D2
W(r) 0 if || >DR 3)
The arguments of the exponential functions in Egs. (1)
and (2), denoted by F; and F,, have values given by the
equations

F, = —’é'['/&l)(rl = Ip) + vy(r — 1] “)

Fy = —3[sg(x) — Tg) = Vsy(X) = T3) + Ygy(xy — Ty)

t sy = T3) = Yse(Ty — Xy)

+ Vsplrz — 1y) + (ry — Xp) — (1) — Ty)

+ ’_/,(rl - r4) + '_/I(l'z - 1'3) - (/I(rz - 1’4)

+ ’_/1(1'3 - r4)] + 2[‘/,(1‘1 - l'3) + (/r[(rz - r4)].

(5)

The notations s4(r) and /,(r) denote the structure
functions for the (residual) phase and for the log ampli-
tude. The notations ¥ s4(r) and ¥/,(r) denote the covari-
ance of the residual phase and of the log amplitude, re-
spectively.

The structure functions and the covariance functions
are related by the equations /54(r) = 2[7 5,(0)
— 7 s4(r)] and (r) = 2[7(0) — ¥ (x)], and the vari-
ances and the covariance functions are related by the

equations o2, = ¥ 54(0) and of = 7,(0). We can ex-
press the structure functions as

Vs T) = 205,01 — Fs4(m)],
where fs,(r) = V,;(,,(r)/(r,z;‘,,, (6)
and

where fi(r) = 7 (x)/of.
(7

With this notation it is convenient to recast Eqgs. (4) and
(5) as

vir) = 2091 - fur)],

Fy=o%[—1 + falry — x)] + of[ =1 + filr; = 1)),
(8)
Fy= 05,~2 + fsy(x = ¥2) = fss(xy — ¥3)
+ foalT1 = Tg) + fag(xy — 13) = fr4(ry = X4)
+ foalxs = T)] + 0F[~2 + fir; — 1y)
+ filry = r3) + filry = ry) + filry — 1r3)

+ filrs — ry) + ftry — ryl. 9)
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Based on the assumption that the variance of the residual
phase, (r?;,,,, and the log-amplitude variance a-,2 are both
small, and recognizing that f;,(r) and f,(r) have magni-
tudes no greater than unity, we consider the power series
expansion of the exponential functions in Egs. (1) and (2),
retaining only terms up to second order in the argument
of the exponential, i.e., using the approximation that
exp(x) ~ 1 + x + 3x2. With this approximation we ob-
tain the results that

exp(F;) =1+ {rr%,/,[—l + fsally — T3)]
+ afl =1 + fir; = rp)]}
+ %((‘T?s,/,)z{l = 2fs4ry — T3)
+ [Foalrr = £} + (0D)*1 = 2fi(r) — 17)
+ [filry = 1)1%} + 2054071 = fag(ry = T2)

= filry = x3) + fsu(ry — ro)fi(ry — 1))
(10)

and (after considerable algebraic manipulation) the result
that

exp(Fz) =>1 + {(1'%4,[——2 + 2f,;,ﬁ(r1 - rg)]

+ of[—2 + 6fi(r; — 1)1}
+ 3{(0%)[4 ~ Bfsp(ry — T2) + K]
+ (07)7[4 = 24f(r, - 1) + K]
+ 20%5,07(4 — 4f54(xy — 13)
= 12f)(r; — 1) + K441}, (11)
where
Ky = 6fs4(ry — To)fsp(ry — T3)
— 8fss(r1 — To)fs4(ry — 13)
+ 6fs4(r;) — T2)f54iT3 — Ty), (12a)

K, = 6fi(r; — ro)f)(ry — rp) + 24fi)(ry — 1p)fi(r2 — ¥3)

+ 6fi(r; — rp)fi(ry — 1y, (12b)

Kso1 = 2fsslry — 1)fi(ry — 1) + 8f54(r; — 13)

X filry = r3) + 2 fsy(ry — Xo)fitrs — 14). (120

When relations (10) and (11) are substituted into Egs. (1)
and (2), we can obtain the results that

(8) =1+ oy(—1 + azy) + oX(-1 + ap)
+ 302021 = 2a, + Bsy)
+ oDl - 20+ B
+ 02,041 = sy — @ + By, (13)

and
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(82) = 1 + 02,(-2 + 2a4,y) + 07(—2 + 6a))
+ (0222 — dagy + BBsy — 475y + 35y
+ (0D)H2 — 12a; + 38 + 129, + 3a})
+ 02,004 — das, — 12a; + 24,

+ 8‘)/‘1)'[ + 20’5(/701), (14)
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The variance of the Strehl ratio, (rg, is expressed in terms
of the first and second moments of the Strehl ratio, (S)
and (S?), respectively, by the equation og = (S?)
— (8)%. Making use of Eq. (13) and after carrying out
the squaring process and dropping terms of too-high or-
der, we obtain the result that

(S)2 =1+ o2,(—2 + 2a54) + 07(—2 + 2a))

+ (0222 — dasy + ay + Bsg)

where
+(6DA2 — day + of + By)
ff dr dr,W(r) ) W(ry)fss(r; — Tp) + 054074 — dasy — day + 2as40) + 2B54))-
a5y = s (15a) (18)
ff drlerW(rl)W(rg) .
This result together with Eq. (14) allows us to write for
ag, the variance of the Strehl ratio, that
JJ anaraiepwosain, - v 0% = of(4ap + (03)%(2Bse + 20}y — 47,)
a = , (15Db)
ff dr,dr,W(r;)W(ry) + (0-,2)2(—801 + 28, + 2a12 + 12v,)
+ 05407 (—8ay + 8y5)- (19)
J f dry dr, W(r)W(r)[ f5e(r; — 1)1 Considering this result, we can see that the variance of
Bss = , (16a) the Strehl ratio is first order in the log-amplitude vari-
f f dr,dr,W(r,)W(r,) ance but only second order in the variance of the residual
! ! 2 phase. We can consider this our final result, or if we
wish, in the spirit of order-of-magnitude approximations,
we can make the approximations that
ff dr droW(r))W(ry)[ fi(r; — 1'2)]2 asy =~ (d/D)2, a ~ (p/D)7/3, (20a)
B = , (16b)
fj dr;dr, W(r; )W(ry) Bss ~ (d/ID)?, B~ (p/D)™®,  Bss; ~ (d/D)?,  (20b)
Yos = (d/D), vy~ (pIDY*3, v, ~ (d/DY* (/D)™
f J drydr,W(r) W(r)f so(r; — To)fi(r; — T2) (200)
Bsst = ) where d denotes the adaptive optics subaperture size and
| J I drydroW(r,)W(r,) may be considered to be the correlation length for the re-
| ’ (16¢) sidual phase, and p denotes the correlation length for the
‘ log-amplitude variations. These approximations follow
and from consideration of Egs. (6) and (7) and Egs. (15)-(17)
fJ.J drydrydrsW(r) Wirg) W(rs)fs4(r) — ro)fss(rz — r3)
Yoo = , (17a)
JJI drdrydrsWir ) W(r,)W(r;)
JJJ drdrydrsWixr, ) W(ry) W(r)fi(r; — ro)fi(rs — r3)
y, = , (17b)
jff drldrzdr3W( r )W( l’z)W( r3)
fJ'J drldrzdréW(rl)W(l‘z)W(rs)f,w,(l'l = ro)fi{ry — 13)
Yool = (17¢)

ffj dl']drzdr;gW( r )W(rz)W(rg)
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and from consideration of the facts that the value of f5,(r)
goes to zero rather rapidly for values of r for which |r|
> d, that the value of fi(r) goes to zero (some what more
slowly) when the value of r is such that |r| > p, that for
all adaptive optics systems d < D, and that the value of p
is of the order of a few to a few tens of centimeters (de-
pending on the wavelength), while the telescope aperture
diameter D is of the order of meters—so p < D. That
the p over D ratio shows up in relations (20) raised to the
seven-thirds power rather than to the second (or six-
thirds) power is a consequence of the way in which f(r)
approaches zero as the value of [r| increases—with an ini-
tial undershoot (i.e., a drop below zero value)—as devel-
oped by Gracheva and Gurvich? and by Lutomirski et al®
In writing the expression for 8,,, we have made use of
the fact that (except under conditions of saturated
scintillation®) p will be greater than r, and thus greater
than d, so the effective range of the integrand in Eq. (16¢)
is set by d and not by p.

The approximation sign is used in relations (20) to in-
dicate only an order-of-magnitude dependence. In this
order-of-magnitude sense we can recast Eq. (19) as

ok = a2 pID)V" + (o3)dID)? + (o] 2(p/D)B

+ od,0f(p/D), (21)

The first thing to be noted in considering Eq. (21) is that
in all existing adaptive optics systems d < D and that for
all propagation conditions of interest the value of p is
comparable to or larger than r, and is thus comparable to
or larger than d.

This allows us to conclude that to leading order, the
Strehl ratio variance, o% does not depend on the variance
of the residual phase, o%, but rather on the log-
amplitude variance ¢?. Only in the extreme case where
the scintillation is so weak that o} is less than
(o%,)%(d/p)?* would the (¢5,)?-dependent term be domi-
nant. The general form of the order-of-magnitude result
can be written as

ol (p/D)?

if of = (03,)2(d/py2(D/p)?
= 2 2 9 -
(o5, (d/D)*

7s otherwise
(22)

This presumes for its development that o, < 1.

Starting from Eq. (13), the corresponding results for
the mean value of the Strehl ratio, (S), is given by the re-
lation

(8 ~1 - o3, — o}, (23)
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just as we might have expected. The leading value in the
deviation from unity of the mean value of the Strehl ratio
can be either 0%, or o7 depending on which is greater.
The deviation from unity of the mean value of the Strehl
ratio can be dominated by the mean square residual
phase error, whereas the variance of the Strehl ratio can-
not.

From consideration of relation (23) we can see that (S),
the mean value of the Strehl ratio, is dependent on the
first power of o2, the mean square value of the residual
phase error. The effect of of, the log-amplitude vari-
ance, which generally is significantly smaller than (r%(,,, is
consequently generally only of secondary importance in
determining the value of (S). On the other hand, we see
from consideration of Egs. (21) and (22) that for o2, the
variance of the Strehl ratio, generally the dependence is
principally on (r,2, the log-amplitude variance, with only a
second-order dependence on (r%l,,, the mean square value
of the residual phase error—even though the value of a§¢
can be significantly larger than the value of (r,z.
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